Unveiling Technology-Enabled, Rapid-Response Fresh Food Supply Chains

November 20th, 2020

J. Rene Villalobos
International Logistics and Productivity Improvement Laboratory
Arizona State University

AGENDA

- Introduction of event
- Event Schedule
- Background
- TERRa Fresh Introduction and Demo
- Other Activities
- Conclusions and Introduction to workshops
Introductions

J. Rene Villalobos
Associate Professor of Industrial Engineering
Arizona State University

Patrick Phelan
Professor of Mechanical & Aerospace Engineering
Arizona State University

George Runger
Professor of Industrial Engineering
Arizona State University

Paul Gutierrez
Professor Agricultural Economics
New Mexico State University

Rodrigo Ulloa
Ph.D. Candidate, Industrial Engineering
Arizona State University

Xaimarie Hernandez
Ph.D. Student, Industrial Engineering
Arizona State University
Goals of the event

- Present the objectives and impact of the project funded by FFAR
- Introduce the Concept of Technology-Enabled, Rapid-Response Fresh Food Supply Chains (TERRa-Fresh)
- Demonstration of a prototype of TERRa-Fresh
- Next steps and introduction to workshops
AGENDA

Introduction of event

Event Schedule

Background

TERRa Fresh Introduction and Demo

Other Activities

Conclusions and Introduction to workshops
Activities for today

8:30 – 9:45 AM Introduction of TERRa-Fresh and summary of tools developed.
Lead: Rene Villalobos
Zoom Link: https://asu.zoom.us/j/82868098308

9:50 – 10:45 AM Workshop on planning and coordination tools for fresh fruits and vegetables.
Facilitated by Paul Gutierrez and Omar Ahumada
Zoom Link: https://asu.zoom.us/j/89438758955

9:50 – 10:45 AM Workshop on Market Intelligence.
Facilitated by George Runger and Hector Flores
Zoom Link: https://asu.zoom.us/j/84135179486

9:50 – 10:45 AM Workshop on Cold Chain issues and mini-containers.
Facilitated by Pat Phelan and Jim Kallof
Zoom Link: https://asu.zoom.us/j/83865883671

9:50 – 10:45 AM Workshop conclusions.
Facilitated by Arnie Maltz
Zoom Link: https://asu.zoom.us/j/82809504308
AGENDA

Introduction of event

Event Schedule

Background

TERRa Fresh Introduction and Demo

Other Activities

Conclusions and Introduction to workshops
Motivation on Fresh Fruits and Vegetables

- Fresh Fruits & Vegetables (FFV) are the cornerstone of healthy diets worldwide.
- They form the core of local food and grass roots movements.
- They present important opportunities for small growers for attracting new growers.
- Some challenges need to be sorted to take on these opportunities.
Technologies and strategies

• E-commerce and pick-up of orders (almost every grocery store).
• Sharing economies (uber eats, uber freight).
• Smart Appliances (order placing refrigerators).
• Real time information (POS, social networks).
• E-commerce and direct delivery of orders (Amazon, Instacart).
• Real time information and sensors (harvest, traceability, inventory levels).

Can we use these technologies to build supply chains to make lean, direct connections between growers and consumers?
The Vision of the FFAR Project

Build information-rich, opportunity discovery, decision-making environments that **enable small farmers to sale directly their products in the most attractive markets.**

Leverage, the real-time information from all the echelons of the supply chain obtained **by sensors and new information technologies.**

Capture optimal value for the SC stakeholders such as the **grower**, the final customer, the retailer and the **environment.**

Propagate market responsive SC based on **demand-pull** instead of the current **supply-push** strategies.
Introduction of event
Event Schedule
Background
TERRa Fresh Introduction and Demo
Other Activities
Conclusions and Introduction to workshops
TERRa-Fresh stands for:

Technology-Enabled Rapid-Response Fresh supply chains

- It is an integrated planning, analytics, coordination and marketplace environment that seeks to exploit the new technological realities for the benefit of the growers, the consumers, and the environment.

- It enables market-oriented supply chains based on the effective utilization of market intelligence, information technology, negotiation, coordination, and planning decision support tools.

- It shortens the SC distance between growers and emerging market opportunities.
Core TERRa-Fresh strategies

Implement a connected multi-module platform onto which market intelligence and supply chain planning tools will be hosted, enabled, and solutions deployed in the form of short supply chain designs.

Explore and construct automated logistics planning, monitoring and coordination tools for the efficient operation of supply chains.

Build open access systems that are adaptable, scalable, transparent and promote verifiable traceability.

Empower logistics agents working on behalf of the growers and consumers known as supply chain articulators.

Create a marketplace to attract risk capital to fund the formation of virtual enterprises.
Segmentation of the Problem

Steps:

1. Opportunity is identified.

2. The potential players are identified.

3. The logistics agents put together the specific teams in the supply and demand sides, along with production plans.

4. Final implementation takes place.
Example of a Latent Opportunity

At the beginning of 2018 there was an increase of interest and demand for celery and celery juice which led to an increase of celery prices across the US markets.

If grower’s had access to information that reflected this increase in demand and prices, they could have benefitted from this opportunity.
Decision Support Stages

Projected Prices

Celery Historical Price Statistics

- Min of Avg. Price
- Average of Avg. Price
- Max of Avg. Price

Potential Growing Regions

Expected Yields

- Rodrigo Ulloa
 - Industrial Engineering
 - Arizona State University
 - Email: rodrigo.ulloa@asu.edu

- Adnan Abdullahi
 - Mechanical Engineering
 - Arizona State University
 - Email: aabdull8@asu.edu

Planning Tools (Planting/Harvesting Decisions)

Objective:

\[
\begin{align*}
\text{Max} & = \sum \left(\sum SC_{i} \cdot \alpha + \sum \sum SW_{j} \cdot \beta + \sum \sum SD_{k} \cdot \gamma \right) \cdot \text{price}_{i} + \sum SK_{j} \cdot \text{Psalv}_{j} \\
& - \sum \sum \text{Plant}_{i,j} \cdot C_{\text{plant}} - \sum \sum \text{Opf}_{i,j} \cdot C_{\text{plant}} - \sum \sum H_{i,j} \cdot C_{\text{hire}} - \sum \sum V_{i} \cdot C_{\text{temp}} \\
& - \sum \sum \text{Opf}_{i,j} \cdot C_{\text{plant}} - \sum \sum Z_{i,j} \cdot P_{\text{avg}} + \sum \sum \text{Pack}_{i,j} \left(C_{\text{case}} + C_{\text{opf}} \right) \\
& - \sum \sum \text{Inv}_{i,j} \cdot C_{\text{chire}} - \sum \sum \text{inw}_{i,j} \cdot C_{\text{chire}} \\
& - \sum \sum \text{SC}_{i,j} \cdot C_{\text{temp}} - \sum \sum \text{SW}_{i,j} \cdot C_{\text{temp}} - \sum \sum \text{SD}_{i,j} \cdot C_{\text{temp}} \\
& - \sum \sum \text{SPD}_{i,j} \cdot C_{\text{temp}} - \sum \sum \text{CTPD}_{i,j} - \sum \sum \text{CTW}_{i,j} - \sum \sum \text{CTD}_{i,j} \\
& - \sum \sum \text{CTPW}_{i,j} - \sum \sum \text{SPW}_{i,j} - \sum \sum \text{CTWP}_{i,j} \\
& - \sum \sum \text{ST}_{i,j} \cdot C_{\text{temp}} - \sum \sum \text{Time}_{i,j} \cdot C_{\text{temp}} - \sum \sum \text{SL}_{i,j} \\
& - \sum \sum \text{SW}_{i,j} \cdot C_{\text{temp}} - \sum \sum \text{Price}_{i,j} \cdot C_{\text{temp}} - \sum \sum \text{Time}_{i,j} \cdot C_{\text{temp}} - \sum \sum \text{SL}_{i,j}
\end{align*}
\]
Main steps of the SC construction process

1. Discovery of market opportunity
 Prediction of prices, volumes, location and timing of the opportunity

2. Determination of the “technical” feasibility of the opportunity
 Based on agronomic and logistics conditions, identification of potential complementarity regions and partners to respond to opportunity

3. Determination of the financial feasibility of the opportunity

4. Advertising of opportunity and expected return to potential investors

5. Identification of investors and associated financial resources

6. Vetting and refinement of identified opportunity

7. Formation of virtual enterprise to capture opportunity

8. Identification of key supply chain articulators

9. Deployment of planning, monitoring, improvement and supply chain recovery tools
Introduction to demo

www.terra-fresh.com
Some functionality features

- Virtual Enterprise (coops) formation.
- Supply Chain Articulator (coordination).
- Attraction of external risk capital.
- Traceability.
- Reconfigurability based on real-time data.
AGENDA

- Introduction of event
- Event Schedule
- Background
- TERRa Fresh Introduction and Demo
- Other Activities
- Conclusions and Introduction to workshops
Problems in Local Logistics: Small Grower Perspective

CURRENT SITUATION

• Lack of logistics capacity and service providers
• Lack of open-access facilities for processing, packing, pre-cooling, and cold storage
• Lack of critical mass for an individual grower to access efficient logistics
• Aggregation of products from different growers in a vehicle difficult because of regulations and incompatibility of products
• Lack of platforms to make an efficient demand-supply match
• Not ready for new market conditions

OUTLINE OF SOLUTIONS

• Access to efficient and low-cost first-mile logistics by aggregating products from different growers to reach critical masses while meeting regulations, no cross-contamination, shelf life preservation, etc.
• Utilize/Develop tools for coordinating the production of different growers for efficient aggregation of products
• Develop services to interface the small farmer directly to the market
Out-of-the-Box Solution for Problem: A Box, the Mini-Container

Research Areas

Market intelligence

Development of predictive and prescriptive analytics tools for market intelligence:

• Data gathering from currently relevant and latent sources
• Identify opportunities
• Assess opportunities
• Present opportunities to farmers, SC stockholders and potential external investors
• Identify regions and farmers with response capacity to opportunities and being part of a common (virtual) enterprise
• **Identify conditions of vulnerability of the SC**
• **Maintain continuous surveillance of the conditions of the SC**

Planning tools

System level design
Research Areas

Market intelligence

Development and Adaptation of decision support tools:

- Assess feasibility for capturing identified opportunities
- Determine investment level and associated risk with opportunity

Planning tools

- Match making between opportunities and investors
- Planning and negotiation platforms for location and allocation of opportunities (through supply chain articulators)
- Tactical planning for planting constrained by resources and stochasticity
- Incorporation of weather-based yield predictions into planning models
- Planning modeling for harvesting and distribution
- First-mile planning for local and distant markets
- Evaluate total landed costs and environmental footprint
- Real time reconfiguration of supply chain (sensor-based)

System level design

- Evaluate total landed costs and environmental footprint
Research Areas

Market intelligence
• Data acquisition
• Data storage
• High level design of TERRa-Fresh
 • Elements
 • Tools to be deployed
 • Interaction between tools
 • Interaction between elements

Planning tools

System level design
• User Interface
• Access and protection of information
• Real-time, sensor Interface
Next steps

1. Verification of models
2. Validation of results (i.e., representative farms)
3. Pilot implementation
4. Dissemination of results
5. Finding partners for further development of the system
Conclusions

• TERRa Fresh’s objective is to take advantage of the new technological realities for:
 • Increasing income for small growers
 • Attracting new growers into the field
 • Providing the tools for collaboration among growers to capture opportunities previously unavailable
 • Providing tools for making possible the transformation of the supply chains of fresh produce
 • Eliminating waste and harmful emissions
 • Providing transparency to the industry
 • Providing traceability and other relevant information to the consumer to affect supply chain practices
FFAR Team

ASU Team
J. Rene Villalobos
George Runger
Arnie Maltz
Pat Phelan
Rodrigo Ulloa
Xaimarie Hernández Cruz
Grace Neal

Former ILPIL members
Hector Flores
Omar Ahumada
Octavio Sanchez

NMSU Team
Paul Gutierrez
Madhav Regmi
Chadelle Robinson

Other Partners
Jim Kallof
Patty Emmert
Paul Cordero
Duncan Family Farms
La Montañita Coop
Sol y Tierra Growers
Mini-Container Team

Faculty:
J. Rene Villalobos
Pat Phelan

Students:
Keshawa Bandara
Levi Siwek
Derrall Riley
Mahmmoud Syam
Sergio Lopez
Next Activities

9:50 – 10:45 AM Workshop on planning and coordination tools for fresh fruits and vegetables.
Facilitated by Paul Gutierrez and Omar Ahumada
Zoom Link: https://asu.zoom.us/j/89438758955

9:50 – 10:45 AM Workshop on Market Intelligence.
Facilitated by George Runger and Hector Flores
Zoom Link: https://asu.zoom.us/j/84135179486

9:50 – 10:45 AM Workshop on Cold Chain issues and mini-containers.
Facilitated by Pat Phelan and Jim Kallof
Zoom Link: https://asu.zoom.us/j/83865883671

11:00 – 11:30 AM Conclusions of Workshop.
Zoom Link: https://asu.zoom.us/j/82809504308

Links to workshops can be accessed at: http://terra-fresh.com/Events
J. Rene Villalobos

rene.villalobos@asu.edu

International Logistics and Productivity Improvement Laboratory

ilpil.asu.edu

School of Computing, Informatics and Decision Systems Engineering
Schematic of Current Fresh Produce Supply Chain

Local Logistics

- Farm, Farming Practices and harvesting
- First mile logistics: Routing
- Consolidation, pre-cooling and introduction to cold chain
- Packaging and storage at origin
- Long Haul Transportation

- Transportation to retailer
- Storage at distribution Center
- Local Transportation
- Warehouse picking and preparation for local transportation
- Storage at broker's or wholesaler's warehouse
- Display at retailer shelf
- Transportation to Consumer's premises
- Storage at consumer's premises
- Preparation and Consumption
Integrated Planning Tool

- Considers **prices prediction** obtained through **Market Intelligence** tools.
- Considers **expected yields** for different regions generated from the **Agronomic Potential** module.
- Considers general regional **logistics parameters** and **costs**.
- Provides a recommended **production plan** for different type of users.
- Identifies the **best set of regions** to supply produce for an identified market signal, demand or opportunity.
Example of a Current Opportunity

(We know what we can know)

- Profit time series for crops with different shelf lives.
- It is expected that crops with higher shelf life will result in lower profits than crops with short shelf life.
- Revenue based on USDA terminal market prices.
- Costs based on production crop budgets and transportation costs.
Phases of Decision Support Tools Development

1. Initial platform for market and logistics data
2. Open access agronomic-potential module
3. Open access planting and planning module
4. Initial market intelligence and analytics module
5. Initial market negotiation platform
6. Develop general design of the demand side platform
7. Prototype of integrated platform
Some Benefits of the Mini-Containers

- Allows the aggregation of storage/transportation-incompatible small harvests into a single truck.
- Allows the virtual creation of cold storage facilities in places with limited access to these facilities.
- Allows the immediate introduction to the cold chain of harvests by having a CDU at the farmer’s premises to do the precooling of crops.
- Allows the reduction of carbon footprint.
- Enables direct small farm-to-market transaction, skipping intermediaries and inefficient extra handling of the crops.
- Allows precise temperature and environmental control as well as full traceability and real-time tracking.
- Ideal for the upcoming automated and autonomous logistics systems.